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ABSTRACT

Schizophrenia, a complex and debilitating mental disorder affecting millions

worldwide, poses significant challenges for researchers due to its intricate neural

interactions and dynamic cerebral changes. Despite advancements in neuroscience,

current research often struggles to capture the multifaceted nature of schizophrenia,

limiting the development of effective treatments and interventions. Consequently, there

is a pressing need for computational models capable of accurately reproducing the

neuropathological characteristics of schizophrenia to deepen our understanding of the

disorder. In response to this imperative, The Virtual Brain framework was employed

for executing large-scale brain simulations, incorporating the Jansen Rit neural mass

model. Drawing on insights from prior studies on neural aberrations associated with

schizophrenia, region-specific dysfunction was incorporated into the simulations. The

focus centered on modeling functional connectivity, a critical aspect of schizophrenia

pathology, through the simulation of Blood Oxygen Level Dependent (BOLD) signals.

Leveraging Bayesian optimization techniques, simulation parameters were fine-tuned

using empirical data, resulting in a substantial 48% reduction in Mean Squared Error.

Furthermore, the study looked to detect the presence of previously identified

biomarkers for schizophrenia in the simulation. Through subsequent analysis, the

presence of 5 biomarkers was successfully identified, reaffirming the utility of the

simulation framework in elucidating key aspects of the disorder.
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CHAPTER 1:

INTRODUCTION

1.1 Introduction to Project

Schizophrenia, a profound mental disorder, disrupts individuals' thoughts, emotions,
and perceptions. Its symptoms range from hallucinations and delusions to disorganized
thinking and social withdrawal. This complexity stems from the intricate neural
mechanisms underlying the condition.

Computer simulations or modeling provide a compelling opportunity to unravel these
complexities. By simulating neural processes, these models aim to replicate the
intricate interactions within the brain. Such simulations hold the potential to illuminate
the underlying mechanisms of schizophrenia, offering insights into its nature and
paving the way for more effective treatment approaches.

1.2 Purpose of the Project

The purpose of this project is to leverage computer simulations to deepen our
understanding of schizophrenia. These simulations attempt to replicate brain functions
associated with the disorder, providing insights into the neural mechanisms driving its
symptoms. In further studies, simulations can potentially serve as a platform to test
potential treatments, allowing researchers to simulate the effects of medications or
therapies on the modeled brain activity. Additionally, these simulations could facilitate
personalized medicine by tailoring interventions based on individual brain patterns
observed in the simulations.

1.3 Problem Definition

The project focuses on the development of computational models that simulate intricate
neural changes associated with schizophrenia. Specifically, we aim to assess existing
research that identifies functional biomarkers indicative of schizophrenia using
Machine Learning techniques. Functional Magnetic Resonance Imaging (fMRI) is a
neuroimaging technique that measures brain activity by detecting changes in blood
flow and oxygenation over a duration of time.

Biomarkers are measurable indicators or characteristics that can be objectively assessed
and evaluated as signs of biological processes, conditions, or diseases within the body.
In the context of schizophrenia and neuroimaging like fMRI, biomarkers often refer to
specific patterns or measurements of brain activity, structure, or function that are
associated with the disorder. These biomarkers can include various aspects observed in
brain imaging, such as changes in blood flow, neural connectivity, or structural
abnormalities that might be indicative of schizophrenia or its progression. We look to
validate these studies, and subsequently integrate certain biomarkers into a simulation
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model that can faithfully replicate these neural aberrations at the region-level of the
brain. Subsequently we also aim to optimize the model on empirical data for better
generalizability.

1.4 Existing System

There are several tools available for modeling brain dynamics and understanding
neurological conditions:

● The Virtual Brain:
The Virtual Brain [11] is a simulation platform that aims to model and simulate
brain dynamics by replicating detailed connectivity patterns which are specific
to an individual.

● NEURON:
NEURON [15] is a widely used simulation environment for modeling
individual neurons and networks of neurons. While its primary focus is on
cellular and subcellular level simulations of neurons and synapses.

● NEUROLIB:
Neurolib [41] is a Python-based computational framework for whole-brain
modeling. It offers neural mass models to represent brain region activity on a
mesoscopic scale. Researchers can simulate, optimize models, analyze data, and
employ evolutionary algorithms for parameter tuning and fitting to empirical
data.

● Brian Simulator:
BRIAN [13] is a Python-based open-source simulator for spiking neural
networks, offering ease of use for beginners and experts alike.It is highly
regarded in the field of computational neuroscience for its ease of use and
flexibility, making it suitable for both beginners and experts.

● NEST:
NEST [14] is a simulator focusing on spiking neural network dynamics.
Developed by the NEST Initiative, it's ideal for various applications like
mammalian visual or auditory cortex processing. NEST offers efficient
simulations, synaptic plasticity tools, precise spike timing support, and
topological network definition, accessible standalone or via Python (PyNEST).

● GENESIS:
GENESIS [16], (GEneral NEural SImulation System), is a platform supporting
a wide range of neural system simulations, from subcellular components to
complex single neuron models. Capable of handling large networks and creating
system-level models, GENESIS is a comprehensive tool for neural research and
study.
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These platforms are frameworks for modeling neural dynamics, allowing researchers to
simulate various aspects of brain function and connectivity.

1.5 Scope of the project

● Validate biomarkers: Create advanced computational models integrating
machine learning-identified biomarkers from fMRI scans to simulate
schizophrenia-related neural changes.

● Application of advanced optimization: Use state of the art of the optimization
techniques for the simulation to better mimic empirical brain imaging

● Integration of user-specified neuroimaging: The simulation can be optimized
on user-provided neuroimaging data to better mimic the empirical data

● Neural Mechanism Understanding: The simulation offers insights into the
underlying neural mechanisms of schizophrenia, aiding in understanding how
specific neural aberrations contribute to the disorder's manifestation.

● Drug Development and Testing: By simulating neural responses to potential
medications, the model could potentially be used in further studies for
predicting drug efficacy and potential side effects, expediting drug development
processes.
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CHAPTER 2:

LITERATURE SURVEY

2.1 fMRI Biomarkers for schizophrenia

We examined studies that revealed abnormal brain activity patterns linked to
schizophrenia. Our search focused on studies that utilized fMRI thereby providing an
insight into abnormal functioning in the resting state of a schizophrenia brain. By
summarizing these findings, we aimed to identify distinctive dysfunction that could be
incorporated into our simulation.

2.1.1 Function Striatal Abnormalities (FSA) Score

The striatum is thought to play a central role in the pathophysiology of schizophrenia.
Most individuals with schizophrenia are managed with antipsychotics, all of which
essentially rely on the blockade of dopamine D2 receptors in the striatum. In [1], the
authors looked to develop a new fMRI biomarker for schizophrenia by quantifying
striatal dysfunction as FSA. Participants in this study were recruited from six hospitals
in China. The study involved a total of 1,100 subjects, including 560 individuals with
schizophrenia and 540 healthy controls, who successfully completed MRI scans after
screening. The preprocessing of fMRI data was conducted using the BRANT
(Brainnetome Resting-state fMRI Toolkit) version 3.35, a MATLAB toolbox designed
for batch preprocessing of fMRI data. The study used the Human Brainnetome Atlas
[71] to define and delineate the subregions of the striatum in the human brain.

The study systematically characterized striatal dysfunction using a variety of
resting-state fMRI markers, including fractional amplitude of low frequency
fluctuations (fALFF) and Regional Homogeneity (ReHo), as well as intra- and
extra-striatal functional connectivity (FC). FC provides insights into how different
areas of the brain communicate and interact with each other, even when they are not
directly connected structurally. ReHo measures the local synchronization of brain
activity, reflecting the extent to which the activity in a given region is similar to that of
its immediate neighbors. fALFF quantifies the ratio of the amplitude of low-frequency
fluctuations (typically in the frequency range of 0.01-0.1 Hz) to the total amplitude
across the entire frequency range. The study found that both fALFF and ReHo were
significantly increased in the schizophrenia group. These differences were more
prominent in the striatum than in other gray matter regions. Additionally, intra-striatal
FC was greater between striatal subregions in the schizophrenia group, and
extra-striatal FC revealed widespread connectivity differences, particularly in the
anterior salience network. These findings indicated substantial alterations in striatal
function and its connectivity patterns in individuals with schizophrenia. Having
established that FSA (that is, striatal fALFF, intra-striatal FC and extra-striatal FC)
provide a robust, reproducible and regionally specific representation of striatal
dysfunction in schizophrenia, the researchers aimed next aimed to collapse these
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distinct measures of striatal dysfunction into an individualized FSA score, yielding a
new biomarker. To this end, they trained Support Vector Machine classifiers to predict
the diagnostic status of each individual (schizophrenia versus control group individuals)
and defined an individual’s FSA score as the shortest distance in the SVM feature space
to the separating hyperplane. FSA score polarity was defined such that individuals with
positive FSA scores were predicted to belong to the control group. The SVM was
trained using the following features: (1) fALFF for each striatal voxel, (2) intra-striatal
FC and (3) extra-striatal FC as shown in Fig 2.1.1.1 . However only fALFF was
included in the SVM, given that striatal fALFF and ReHo were highly correlated P <
0.0001 and that fALFF showed more extensive between-group differences than ReHo.

Fig 2.1.1.1: Schematic of the SVM predicting individual diagnostic status and depiction
of FSA score calculation. Source: Fig 4.1, A. Li et al 2020 [1]

The feature selection step was omitted to minimize biases and model complexity, and
all 12,689 features, including measures of striatal function and FC, were employed in
the SVM model. The machine learning library scikit-learn was used for this analysis. A
radial basis function kernel was chosen because the feature space was high-dimensional
and likely nonlinear. Hyperparameters (C and γ) for the SVM model were optimized
through a grid search within the training set. The researchers used an inter-site
cross-validation strategy to evaluate the performance of the SVM classifier by training
the model using data from six of the seven scanners and testing the model’s
performance on the data from the remaining scanner. FSA distinguished individuals
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with schizophrenia from healthy controls with an accuracy exceeding 80% (sensitivity,
79.3%; specificity, 81.5%).

2.1.2 Reduced Ventral Striatal–Hippocampus Coupling During
Reward Processing

Reduced ventral striatal (vST) activation during reward anticipation is an established
phenotype in schizophrenia [3], detectable not only in patients but also in unaffected
first-degree relatives and correlated with polygenic risk scores (a measure of your
disease risk due to your genes) for psychotic disorders. In this study, the researchers
investigated the diminished connectivity between the ventral striatum and the
hippocampus during reward processing as an endophenotype for schizophrenia. In the
context of this study, reward processing refers to the brain's response and neural
mechanisms involved in anticipating and experiencing rewards. It involves the
activation of specific brain regions, such as the ventral striatum and the hippocampus,
during the anticipation and processing of rewarding stimuli. The study aimed to
investigate the altered connectivity between the ventral striatum and hippocampus in
individuals with schizophrenia and its potential transdiagnostic relevance to mood
disorders such as bipolar disorder and major depression. The researchers also explored
the association between this altered connectivity and dimensions of psychopathology
across disorders. The study included 728 participants, including healthy individuals
(n=396), unaffected first-degree relatives, and affected patients with schizophrenia,
bipolar disorder, and major depression. Psychiatric diagnoses were confirmed using
clinical interviews. The participants underwent fMRI to assess ventral
striatal-hippocampus connectivity. The researchers used the Schizotypal Personality
Questionnaire to measure psychotic-like experiences and extracted factors related to
positive and negative symptoms. They also focused on memory functioning. The
results showed that ventral striatal-hippocampus connectivity was altered in
schizophrenia, and these alterations extended trans diagnostically to bipolar disorder
and major depression. The altered connectivity was associated with positive and
negative symptoms and memory dysfunction. The study also examined unaffected
first-degree relatives and found that they showed similar alterations in ventral
striatal-hippocampus connectivity, suggesting a familial component. Overall, the
findings suggest that altered ventral striatal-hippocampus connectivity may be a
potential intermediate phenotype across schizophrenia, bipolar disorder, and major
depression. It notably aligns with the hypothesis of reduced extra-striatal FC as
elucidated in [1].

2.1.3 Degree Centrality and Voxel Mirrored Homotopic Connectivity

This study aimed to identify biomarkers that classify schizophrenia patients and healthy
control subjects and investigate the potential neural mechanisms of schizophrenia using
degree centrality (DC)- and voxel-mirrored homotopic connectivity (VMHC)-based [4]
radiomics. Radiomics involves the extraction and analysis of quantitative features,
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including some invisible to the human visual system, from medical images, such as
fMRI scans.

The authors conducted a study on patients diagnosed with schizophrenia and Healthy
Controls using data from the Center for Biomedical Research Excellence (COBRE)
repository hosted on the Neuroimaging Informatics Tools and Resources Collaboratory.
Participants underwent structural MRI and resting-state fMRI scans on a 3-T Trio Tim
Scanner (Siemens). Data processing, including volume removal, slice timing correction,
realignment, segmentation via the new segment approach, image registration through
Diffeomorphic Anatomical Registration Through Exponentiated Lie Algebra
(DARTEL), spatial normalization via DARTEL (resampling: 3 * 3 * 3 mm³), removal
of nuisance covariates, and bandpass filtering (0.01–0.10 Hz), was performed using
Data Processing & Analysis of Brain Imaging and Statistical Parametric Mapping 12.
For VMHC, additional steps included registering pre-processed images to a symmetric
template and smoothing with a Gaussian kernel. Fisher’s z-transformations were applied
to the resulting DC and VMHC maps.

Fig 2.1.3.1: (A) fMRI measures (DC and VMHC) and Brainnetome 246 atlas. (B)
Intensity-based histogram and textural features were extracted from DC and VMHC
images. (C) Two-sample t-tests and LASSO were performed for feature selection. (D)
An SVM model was built and ROC curve analysis was applied to evaluate model
performance. Source: Fig 1, D. Shi et al. 2022 [4]

In-house scripts were employed for feature extraction, using the Brainnetome 246 atlas
to obtain 15 intensity-based histograms and 33 texture features from individual DC and
VMHC maps, resulting in a total of 23,616 features [(15 + 33) * 246 * 2 = 23,616] for
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each participant. Feature selection involved t-tests and Least Absolute Shrinkage and
Selection Operator (LASSO) to reduce dimensionality. LASSO regression prevents
overfitting in linear models by constraining coefficient values, reducing errors, and
enhancing accuracy. Nested ten-fold cross-validation was utilized for model evaluation
and hyperparameter tuning (optimal λ of LASSO) in a SVM classifier. Standardization
of features to z-scores preceded the process. The SVM classifier (linear kernel, C = 1)
determined the state (Schizophrenia patient or Healthy Control) through ten-fold
cross-validation (repeated 20 times). Performance metrics included mean accuracy,
balanced accuracy, AUC, F1 score, sensitivity, specificity, and precision. ROC curve
analysis assessed model performance, with permutation tests confirming classification
significance (AUC and accuracy). The SVM model with a linear kernel provided feature
weights, where positive weights indicated higher measurement in schizophrenia
patients, negative weights indicated higher measurement in healthy controls, and the
absolute value represented the feature’s contribution to classification. The optimal λ of
LASSO was tuned using grid search based on classification accuracy, resulting in an
AUC of 0.808 and accuracy of 74.02%.

2.1.4 Striatal Connectivity Index (SCI)

In the search for prognostic biomarkers in schizophrenia, particularly to predict clinical
response to antipsychotic drugs, recent research [2] has spotlighted the potential of
resting state fMRI. Their research indicates that intrinsic connectivity patterns of the
striatum could serve as a predictive biomarker for treatment outcomes in schizophrenia.
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Fig 2.1.4.1: Outline of the Striatal Connectivity Index Methodological Approach
Source: Fig 1, Sarpal et al. 2016 [2]

Initially, the study focused on a discovery cohort of 41 first-episode schizophrenia
patients. At the outset of their treatment with second-generation antipsychotics, each
patient underwent resting-state fMRI scanning to capture FC maps. These maps were
derived from striatal seed regions, reflecting the complex neural interplay within the
brain. Through the use of survival analysis and Cox regression applied to the
connectivity data, researchers identified 91 regions functionally connected to the
striatum that provided significant prognostic information. These connections formed
the basis of the SCI, a predictive model for assessing the likelihood of a positive
clinical response to antipsychotic medication. The robustness of this model was not
only demonstrated in the discovery cohort but also in an independent generalizability
cohort comprising 40 newly hospitalized chronic schizophrenia patients with acute
psychosis.

The results were telling: the SCI predicted antipsychotic treatment response with high
sensitivity and specificity in both cohorts. This finding is pivotal, underscoring the
index’s potential to differentiate between likely responders and non-responders to
treatment .The positive predictive value of 76% and a negative predictive value of 79%,
further attest to the index’s clinical applicability.
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2.1.5 Resting State Cortical Connectivity

Parallel to the study on striatal connectivity, the investigation in [5] focused on the
superior temporal cortex, a critical region for auditory processing and sensory
integration. By analyzing the baseline functional connections of this region to other
cortical areas, the study found that the strength and characteristics of these connectivity
patterns could predict clinical response to antipsychotic medications with a balanced
accuracy of 82% . This high degree of accuracy was achieved through the application
of machine learning algorithms to FC data, suggesting that resting-state cortical
connectivity could be a robust predictor of both positive and negative treatment
responses.

The study on resting state cortical connectivity in first-episode drug-naive (FEDN)
schizophrenia patients employed a comprehensive approach, encompassing participant
selection, treatment, symptom assessment, MRI data acquisition, and advanced
statistical analyses. The study’s statistical analyses were centered around the
comparison of FC between FEDN schizophrenia patients and healthy control. This
involved calculating the mutual information and zero-lag correlation between regional
time series of BOLD signals, and performing t-tests to assess group differences. The
false discovery rate was controlled to maintain statistical rigor. Furthermore, machine
learning techniques, specifically SVM, were employed to classify patients and predict
treatment response, using FC features derived from the MRI data. This comprehensive
methodology enabled the exploration of the differences in brain connectivity patterns
between FEDN schizophrenia patients and healthy individuals, offering insights into
the potential predictive markers of treatment response in schizophrenia

The study successfully identified FEDN schizophrenia patients with an accuracy of
78.6% and predicted their responses to antipsychotic treatment with an accuracy of
82.5% at an individual level.
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2.1.6 Amplitude of Low-Frequency Fluctuation (ALFF)

Fig 2.1.6.1: Overview of ALLF data analysis. Source: Fig 1, Cui et al. 2019 [6]

In the ongoing quest to find biomarkers that can predict the treatment response in
schizophrenia, the study conducted by Long-Biao Cui, Min Cai, Xing-Rui Wang, and
colleagues [6] stands out as a vital contribution. The team’s research aimed to identify
and validate a neuroimaging signature, specifically the amplitude of low-frequency
fluctuation (ALFF), that could indicate early response to treatment in patients with
schizophrenia. The study involved 100 patients with schizophrenia from the
Department of Psychiatry at Xijing Hospital and 92 healthy controls. ALFF maps were
computed for each participant to capture baseline brain activity, followed by a
voxel-based comparison to distinguish regions where ALFF values differentiated
between treatment responders and non-responders. This led to the extraction of ALFF
values from specific regions of interest, identified based on peak coordinates in clusters
that varied between the two groups. Further enhancing the analysis, these
patient-specific ALFF values were normalized against the mean ALFF values of
healthy controls, creating an ALFF ratio that facilitated a normative comparison.

The effectiveness of the ALFF ratio as a predictive marker was rigorously evaluated
through receiver operating characteristic (ROC) analysis, correlating it with clinical
scales, the length of hospital stay, and antipsychotic dosage. The robustness of this
methodology is highlighted by the area under the ROC curve for the baseline ALFF
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ratio, recorded at 0.746. This value indicates the ALFF ratio’s moderate accuracy in
distinguishing between treatment responders and non-responders, underscoring its
potential utility as a biomarker in clinical practice for schizophrenia treatment
outcomes.

The sensitivity, specificity, and accuracy were calculated to be 72.7%, 68.6%, and
70.9%, respectively, in the primary dataset. These performance metrics were validated
in an independent replication dataset, strengthening the reliability of the ALFF ratio as
a biomarker. The consistency of results across both the principal and replication
datasets attests to the potential of baseline brain activity, as gauged by fMRI, to serve as
a predictive marker for early treatment response in schizophrenia.

2.1.7 Gray Matter Volume (GMV), fALFF, ReHo

The study [7] focuses on Deficit schizophrenia, characterized by enduring negative
symptoms, and stands out as a promising and distinct subtype within the heterogeneous
landscape of schizophrenia. Distinguishing deficit schizophrenia from non-deficit
schizophrenia has been a subject of increasing interest, driven by the recognition of
differential etiopathophysiology, prevalence, and clinical outcomes associated with
these subtypes. In this context, the study delved into the neural underpinnings of deficit
syndrome, leveraging a multimodal neuroimaging approach. Through the integration of
fMRI and structural MRI, the aim is to identify biomarkers capable of discriminating
deficit schizophrenia from non-deficit schizophrenia and healthy controls. Key
neuroimaging features, including GMV, fALFF, and ReHo, are extracted to
comprehensively characterize deficit schizophrenia. Employing machine learning,
specifically SVM classification models, this research seeked to enhance the
understanding of the specific neurobiological signatures associated with deficit
schizophrenia, offering valuable insights for improved clinical assessment and
intervention strategies.

A total of 183 male participants diagnosed with schizophrenia were recruited from
Yangzhou Wutaishan Hospital in Jiangsu Province, China. Inclusion criteria required a
confirmed Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition
(DSM-IV) diagnosis, and deficit schizophrenia was diagnosed using the Chinese
version of Schedule for the Deficit Syndrome (SDS). Non-deficit schizophrenia
participants were those not meeting SDS criteria, while healthy control subjects were
matched for age, gender, and education. Clinical measurements utilized the Brief
Psychiatric Rating Scale and the Scale for the Assessment of Negative Symptoms.
Brief Psychiatric Rating Scale covered positive, negative, disorganized, and affect
syndromes, while Scale for the Assessment of Negative Symptoms focused on negative
symptoms, categorized into motivation and pleasure and diminished expressivity. MRI
data were acquired with a 3.0T MRI scanner, involving both structural MRI and fMRI
during resting-state sessions at Subei Hospital, Yangzhou. The imaging processing
pipeline involved preprocessing of fMRI data using Statistical Parametric Mapping 12
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and Data Processing and Analysis for Brain Imaging toolkit. Nuisance signals were
regressed out during preprocessing.

Fig 2.1.7.1: Schematic overview of the data analysis pipeline. Source: Fig 1, Gao et al.
2023 [7]

As can be seen in Fig 2.1.7.1, model features, including GMV, fALFF, and ReHo, were
computed post-preprocessing. GMV was indicative of structural brain information,
fALFF examined low-frequency fluctuations, and ReHo measured the complexity of
brain function. The methodology employed statistical techniques to analyze
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biomarker-clinical measure relationships. Subgroup analyses were conducted for
participant variations, enhancing findings' robustness. The study prioritized a detailed
examination of the identified biomarker's implications for schizophrenia.

The study encompassed a comprehensive exploration of deficit schizophrenia and
non-deficit schizophrenia through multimodal neuroimaging analyses. Notably, the
multimodal classifier exhibited heightened accuracy (75.48%) compared to
single-modal models in distinguishing deficit schizophrenia from non-deficit
schizophrenia. The discriminative features, extracted from GMV, fALFF, and ReHo,
revealed distinct patterns across brain regions. GMV abnormalities were prominent in
the bilateral inferior frontal gyrus orbital part, superior temporal gyrus, precentral
gyrus, and other regions, with a spatial emphasis on visual, default mode, somatomotor,
and dorsal attention networks. Functional features, including fALFF and ReHo,
displayed abnormalities in areas such as the superior occipital gyrus, inferior temporal
gyrus, superior frontal gyrus orbital part, lingual gyrus, and cingulate gyrus. Strikingly,
the identified discriminative features significantly predicted scores of the diminished
expressivity factor in deficit schizophrenia but not in non-deficit schizophrenia.
Moreover, the relevance vector regression analysis demonstrated a positive association
between predicted and actual scores in the diminished expressivity factor of deficit
schizophrenia, shedding light on the predictive value of these neuroimaging features for
specific negative symptom subdomains.

2.1.8 Functional Networks

The study outlined in [8] looked to assess functional networks in the brain as a
classification feature for schizophrenia. The study included 60 schizophrenia patients,
43 unaffected first degree relatives of patients (18 siblings, 15 sons/daughters, and 10
parents), and 50 Healthy Controls. Of the 43 unaffected first degree relatives, 10 were
relatives of the patients recruited in this study. An independent dataset of 40 patients
and 40 controls was used as a validation to evaluate the performance of classifiers.

MR images were collected using a Siemens Magnetom Trio 3.0 Tesla imaging system
with a standard head coil at Peking University Third Hospital. For image registration,
high-resolution structural T1 MRI data were acquired . Resting state fMRI scans were
obtained using a gradient-recalled echo-planar imaging sequence. The final sample
comprised 40 controls, 34 first degree relatives, and 42 schizophrenia patients.

A pattern classification method was used to identify informative functional networks
and build SVM classifiers to distinguish 32 patients from 30 controls. The pattern
classifiers were built on a subset of functional networks that were selected to optimize
the classification performance for distinguishing schizophrenia patients from Healthy
Controls using an SVM classification algorithm. The SVM classification was based on
similarity measures between subjects computed based on their functional networks.
Classifiers were first built on individual function networks, one for each functional
network, then the classifiers were evaluated with a leave-one-out cross-validation, and
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evaluated using the same cross-validation.The best combination of Functional networks
with the overall best classification performance was to be included in the final
classification.

The informative functional networks included the default mode network, cerebellum,
ventral frontotemporal network, and posterior default mode network with
parahippocampal gyrus. The accuracy of the classifiers built upon the informative
functional networks was 83.9% sensitivity 87.5%, specificity 80% with an AUC of
0.914. The classification results on an independent testing dataset showed that the
identified informative functional networks achieved good performance with a correct
classification rate of 77.5% and AUC of 0.811.

Fig 2.1.8.1: 3 Major Networks in the brain Source: Fig 3, Chengping Rao, 2020 [60]

In conclusion, large-scale functional networks identified by a pattern classification
method were informative for quantifying structural alteration in the brain as well in
schizophrenia as well as in first degree relatives. The classification scores of the first
degree relatives and schizophrenia patients were correlated with their digit symbol
coding scores. These findings suggest that pattern recognition of large-scale Functional
networks could be used as a biomarker for unaffected first degree relatives with
schizophrenia-specific FC patterns, and may help early recognize and treat individuals
at high risk of schizophrenia [9]. The informative functional networks included default
mode network, cerebellum, ventral frontal temporal network, and p-default mode
network were largely consistent with previous findings. FC and multimodal
neuroimaging studies revealed that schizophrenia variably involves several altered
brain regions and circuits [10], and family members of schizophrenia patients might
share similar changes.
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2.1.9 ReHo

The study investigates ReHo patterns in individuals presumed to be at risk for a specific
condition (PRS) compared to healthy controls [28]. Resting state fMRI data were
analyzed using the REST software. Significant ReHo alterations were observed in
specific brain regions among PRS subjects, providing potential neurobiological markers
for discriminating them from healthy controls. Correlation analyses explored
associations between ReHo values and clinical characteristics in PRS subjects.
Additionally, discriminative potential was assessed through Receiver Operating
Characteristic (ROC) and SVM analysis. Identified brain regions with significantly
different ReHo values underwent receiver operating characteristic analysis to assess
their potential as markers for discriminating PRS subjects from controls. Finally, a
classification analysis using SVM with parameter optimization and leave-one-out
Cross-validation was employed to evaluate the discriminatory power of ReHo clusters
between PRS subjects and controls.

ReHo Group Differences: PRS subjects exhibited significant ReHo decreases in the left
inferior temporal gyrus, and increases in the right inferior frontal gyrus and right
putamen compared to controls. Correlations between ReHo Values and Clinical
Characteristics in PRS Subjects: ReHo values in the left inferior temporal gyrus
positively correlated with disorganized symptoms, and those in the right putamen
negatively correlated with general symptoms, though these correlations were not
significant after Bonferroni correction.

Discriminating PRS Subjects from Controls: The left inferior temporal gyrus showed
potential as a discriminating marker with an area under the curve of 0.800, sensitivity
of 91.89%, and specificity of 58.82%. The right inferior frontal gyrus and right
putamen also exhibited discriminatory potential. SVM analyses revealed combinations
of ReHo values providing optimal sensitivity, specificity, and accuracy, with the
combination of values in all three brain regions achieving a sensitivity of 88.24%,
specificity of 91.89%, and accuracy of 90.14%.
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Fig 2.1.9.1: ReHo differences between PRS subjects and healthy controls. Source: Fig
1, Y. Zhang, L. Lv, et al 2016 [28]

2.2 Regions exhibiting dysfunction in Schizophrenia

To mimic region-level perturbations in the simulation model, a literature survey was
conducted to provide insight into regions that exhibited abnormally high or abnormally
low activity in the fMRI of schizophrenia patients.

In [29], alterations in FC patterns were evident across various brain networks in
individuals with schizophrenia. Specifically, regions within the visual network,
sensorimotor network, dorsal attention network, ventral attention network, and
thalamus exhibited notable increases, while FC variability in brain regions spanning the
default mode network and frontal-parietal network to the entire brain displayed
significant decreases. Additionally, [30] highlighted diminished FC between the
bilateral hippocampi and areas implicated in episodic memory, including the posterior
cingulate cortex, extrastriate cortex, medial prefrontal cortex, and parahippocampal
gyrus, in schizophrenia patients. Furthermore, [37] unveiled disrupted FC linked to the
anterior insula's modulation of large-scale brain networks in schizophrenia. Alterations
were observed in the right anterior insula's modulation of the central executive and
default mode networks, potentially contributing to the cognitive deficits seen in
individuals with schizophrenia. Moreover, [38] demonstrated considerable reductions
in FC strength at the regional level within various cortical regions, such as the medial
premotor, cingulate, and parietal cortex, precentral and postcentral cortex, occipital
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association cortex, and left inferior frontal, superior temporal, and insular cortex in
schizophrenia patients. Lastly, [39] revealed lower gray matter density compared to
controls in a network of regions, including the bilateral insular cortex, anterior
cingulate gyrus, left parahippocampal gyrus, middle frontal gyrus, postcentral gyrus,
and the thalamus. These abnormalities were shown to progress from the first episode to
the chronic stage of schizophrenia.

2.3 Abnormalities observed in FC of schizophrenia

The study [65] can be used to note that aberrant intrinsic FC within the Salience
Network's right anterior insula by affecting interactions between the default mode
network (default mode network) and Central Executive Network, showing increased
FC between these networks potentially influencing self-referential and goal-directed
cognitive processes. The study [66] suggests that schizophrenia is associated with
deficits in both within-network and between-network connectivity of the frontoparietal
network, a key network involved in executive control. Specifically, individuals with
schizophrenia exhibited cortico-subcortical disconnections within the frontoparietal
network, alongside increased FC between the sensory processing and the default mode
network.

As specified in [67], the default mode network consisted of various abnormalities in
schizophrenia patients. It showed increased activity in the default mode network- a
result of a process of massive reassociation of traces in schizophrenia, potentially
aimed at minimizing excess free energy in psychosis. By integrating neuroimaging data
with Freudian theory, the study sheds light on the underlying mechanisms of
schizophrenia, emphasizing the significance of default mode network hyperactivity in
the psychopathology of the disorder. The study [70] revealed alterations in FC
involving the cerebellum in schizophrenia patients. An increase in FC between the
cerebellum, and the prefrontal cortex, indicating potential disruptions in cognitive and
executive functions was found. Conversely, a decrease in FC between the cerebellum
and the visual cortex, suggesting impaired integration of sensory information. Besides
this, reduced FC was observed between the cerebellum and the sensorimotor cortex,
implying disturbances in motor coordination and sensory processing. Table 2.3.1
encompasses the composite regions within Connectivity-96 that make up key networks
within the brain.
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Brain Network Composite regions present in
Connectivity-96

Visual network Anterior visual area, ventral part

Visual area 2 (secondary visual cortex)

Anterior visual area, dorsal part

Visual area 1 (primary visual cortex)

Sensorimotor network Secondary somatosensory cortex

Primary somatosensory cortex

Ventrolateral premotor cortex

Primary motor cortex

Dorsolateral premotor cortex

Dorsal attention network Frontal eye field

Default mode network Dorsomedial prefrontal cortex

Frontal–parietal network Anterior insula

Anterior cingulate cortex

Ventrolateral prefrontal cortex

Dorsolateral prefrontal cortex

Inferior parietal cortex

Medial parietal cortex

Intraparietal cortex

Superior parietal cortex

Table 2.3.1: Brain Networks and their composite regions
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2.4 Processing of fMRI

2.4.1 Preprocessing of raw fMRI

Preprocessing of fMRI involves reducing noise from physiological factors and motion
artifacts, aligning data spatially and temporally, normalizing intensity, and applying
spatial smoothing. Detrending removes systematic trends, while normalization ensures
data comparability across scans and sessions. Corrections for slice timing and filtering
focus on specific frequency bands of interest. Artifact removal targets spikes or
outliers, and masking isolates a region of interest. Brain extraction removes non-brain
tissues, and the overall result is a refined dataset that improves the accuracy of studying
brain function and connectivity. For the purpose of our study, we chose to use
pre-processed fMRI datasets owing to the complexity and domain-specific nature of the
work.

2.4.2 Parcellation

In the field of neuroimaging, particularly in methods like MRI and fMRI, the brain is
often analyzed by dividing it into distinct regions through a process known as
parcellation. Parcellation is essential for understanding the organization and function of
different brain areas and for analyzing neuroimaging data effectively. One common
approach to parcellation involves the use of brain atlases, which are reference maps
delineating the brain's anatomical or functional regions based on various criteria such
as cytoarchitecture, connectivity patterns, or functional properties. These atlases serve
multiple purposes in neuroimaging research and clinical practice. Firstly, they provide a
standardized anatomical reference, allowing researchers and clinicians to precisely
identify and label different brain regions for consistent communication and comparison
across studies. Secondly, atlases enable researchers to define specific regions of interest
within the brain for further analysis, facilitating the study of brain activity or
connectivity in relation to specific tasks or conditions. Commonly used brain atlases
include the Talairach, Harvard-Oxford, AAL, Desikan-Killiany, and Brodmann areas,
each providing standardized references for anatomical localization or functional regions
in neuroimaging research.
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Fig 2.4.2: Parcellation atlases. Source: (Online) Experimental Brain Research [68]

2.4.3 Generation of Masks

Generating masks for fMRI data involves creating binary images that highlight regions
of interest in the brain. These masks serve to focus the analysis on specific areas and
exclude irrelevant or noisy data. The process typically begins with anatomical images
or atlases that define brain regions. The mask can be generated manually or using
automated methods based on intensity thresholds, clustering, or atlas-based
segmentation. Once created, these masks are applied to the fMRI data, effectively
isolating the signals from the specified brain regions. This step is crucial for enhancing
the precision and interpretability of subsequent analyses, such as feature extraction and
modeling, by narrowing the focus to the relevant areas of the brain.
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Fig 2.4.3: fMRI with mask for striatum region visualized on MRI

2.4.4 Resampling

Resampling [18] involves transforming a source image to match the dimensions and
orientation of a target reference image, without altering the source image's content. This
process is crucial for ensuring alignment between different imaging datasets,
facilitating meaningful comparisons and analyses. The choice of interpolation method,
such as 'continuous', 'linear', or 'nearest', determines how the transformation is carried
out. Resampling does not modify the source image; instead, it produces a new image
with the desired characteristics, including shape and affine properties, derived from the
target image.
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Fig 2.4.4: fMRI image and Resampled fMRI image in Nilearn. Source: (Online)
Nilearn [18]

2.4.5 Smoothing

Here we smooth a mean EPI (Echo-Planar Imaging, this is the type of sequence used to
acquire a functional or diffusion MRI data) image and plot the result. As we vary the
smoothing [19] full width at half maximum, in a distribution, it refers to the width of a
filter, expressed as the diameter of the area on which the filter value is above half its
maximal value. Note how we decrease the amount of noise, but also lose spatial details.
In general, the best amount of smoothing for a given analysis depends on the spatial
extent of the effects that are expected.

Smoothing in fMRI preprocessing serves multiple purposes, primarily aiming to
enhance data quality and facilitate robust analyses. By reducing random noise and
small-scale variations, it improves the signal-to-noise ratio, aiding in the detection of
genuine neural signals. Smoothing also addresses individual anatomical differences,
promoting better alignment of functional data across subjects and enabling effective
inter-subject comparisons.
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Fig 2.4.5.1: fMRI image with 0mm and 5mm smoothing. Source: (Online) Nilearn [19]

A 0mm smoothing implies no blurring, maintaining the original spatial resolution of the
image. In contrast, a 20mm smoothing introduces a larger blurring effect, merging
nearby voxel values and reducing fine-scale spatial details. 0mm is suitable for
preserving fine anatomical structures, while 20mm may enhance signal-to-noise ratio
and highlight larger-scale patterns in the data.
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Fig 2.4.5.2 fMRI image with 20mm smoothing. Source: (Online) Nilearn [19]

2.4.6 Feature Extraction

Identifying biomarkers for schizophrenia from fMRI data, the feature extraction
process [20] aims to capture neurobiological patterns associated with the disorder. The
steps involved in this specific context might include:

● Time Series Extraction: Time series data is extracted from the masked fMRI
data for specific ROIs or voxels. This involves obtaining a temporal sequence of
signal intensities over the course of the imaging session.

● Functional Connectivity: Measures such as correlation or coherence are
computed to quantify the relationship between different regions of the brain.
This step reveals how activity in one region correlates with activity in another,
providing insights into functional networks.

● Frequency Analysis: Frequency-based features such ALFF or spectral power
in specific frequency bands may be calculated to capture different aspects of
neural activity.
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CHAPTER 3

SOFTWARE REQUIREMENT SPECIFICATIONS

3.1 Overall Description

3.1.1 Hardware Interface

The following hardware specifications were utilized in carrying out the simulation:
● Processor (CPU): A multi-core processor (e.g intel i5 or higher) is

recommended to handle parallel processing efficiently.
● Ethernet connection (LAN) OR a wireless adapter (Wi-Fi)
● Hard Drive: Minimum 32 GB; Recommended 64 GB or more
● Memory (RAM): Minimum 8 GB; Recommended 16 GB or above

3.1.2 Software Interfaces

The Virtual Brain
The Virtual Brain (TVB) [33, 34] is a computational framework designed for
simulating the dynamics of large-scale brain networks using biologically realistic
connectivity. It utilizes tractographic data to generate connectivity matrices, defining
connection strengths and time delays between network nodes. Various neural mass
models are available to define the dynamics of each node. TVB simulates neural
activity such as Local Field Potentials (LFP) and firing rates, as well as brain imaging
data like EEG, MEG, and BOLD activations. It provides tools for connectivity and
network dynamics visualization, time series analysis, and parameter exploration. TVB
aims to model brain structure and function, offering insights into brain function and
disorders like stroke, epilepsy, Alzheimer’s, and Parkinson’s. It simplifies complexity
to attain macro organization, merging brain anatomy from imaging data with
mathematical modeling. TVB serves as a simulation engine for clinical trials,
neuroinformatics initiatives, and research facilities worldwide, supported by over 100
peer-reviewed publications.

Anaconda Navigator
Anaconda Navigator [22] is a user-friendly graphical interface bundled with the
Anaconda distribution. It simplifies package and environment management for Python,
crucial for data science and scientific computing. The Navigator dashboard provides
quick access to tools, enabling easy package installations, updates, and environment
creation. With integrated support for Jupyter Notebooks and other IDEs like Spyder,
Anaconda Navigator caters to both individual developers and large-scale projects.
Backed by a robust community and offering enterprise support, it streamlines the setup
and maintenance of Python environments, ensuring consistency and reproducibility.
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Jupyter Notebook
Jupyter Notebook [23] is an open-source, web-based environment fostering interactive
and collaborative computing. Supporting various languages, it allows users to create
documents with live code, visualizations, and narrative text. With its kernel system,
Jupyter accommodates different programming languages within the same environment,
enhancing versatility. Offering seamless integration with multimedia elements and
popular data visualization libraries, Jupyter Notebooks facilitate dynamic data
exploration and presentation. The ability to share notebooks in multiple formats,
coupled with collaborative features, makes it a go-to tool for researchers, data
scientists, and educators aiming for effective communication and reproducibility in
their work.

Google Colab
Google Colab, or Colaboratory [24], is a cloud-based platform for collaborative Python
coding and data analysis. Built on the Jupyter Notebook interface, it allows users to
create interactive documents combining code, text, and visualizations. Colab stands out
with its free access to Graphics Processing Units and Tensor Processing Units, making
it particularly attractive for machine learning tasks. Operating entirely in the cloud and
integrating seamlessly with Google Drive, it eliminates the need for local installations.
Real-time collaboration features enable multiple users to work on the same notebook
simultaneously. With support for popular Python libraries like TensorFlow, Colab is a
versatile and accessible tool, facilitating collaborative projects in data science and
machine learning.

3.1.3 Software Languages

Python
Python [25] is a high-level programming language renowned for its readability and
simplicity. Created with a focus on code clarity, Python enables developers to express
concepts in fewer lines, making it an ideal choice for both beginners and experienced
programmers. Python stands as a dominant force in machine learning and data analysis
due to its user-friendly syntax and a rich ecosystem of libraries. In machine learning,
Scikit-Learn offers a straightforward interface for various algorithms, while
TensorFlow and PyTorch excel in deep learning applications. Keras simplifies neural
network development within the TensorFlow framework. For data analysis, Pandas and
NumPy provide robust structures for efficient manipulation and mathematical
operations, while Matplotlib and Seaborn offer versatile visualization tools. Python's
readability and versatility attract both beginners and experts, fostering a thriving
community.

3.1.4 Packages Used

Nilearn
Nilearn [26] is a Python library tailored for processing and analyzing fMRI data. It
simplifies the complexities of neuroimaging tasks with features like preprocessing,
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connectivity analysis, statistical tools, and machine learning integration. Nilearn
facilitates efficient data handling, enabling users to explore FC patterns, conduct
statistical analyses, and build predictive models. With seamless integration into popular
neuroimaging libraries, Nilearn is a valuable resource for researchers seeking insights
into brain activation, connectivity, and cognitive states. Its user-friendly interface and
visualization tools make it accessible to both beginners and seasoned neuroscientists,
contributing to advancements in fMRI research and our understanding of the human
brain.

Scikit-Learn
Scikit-Learn, or sklearn [27], is a widely-used machine learning library for Python
known for its simplicity and efficiency. It provides a diverse set of tools for tasks like
classification, regression, and clustering, featuring popular algorithms such as SVM
and Random Forests. With a consistent API, it's easy to experiment with different
models. Scikit-Learn offers functions for data preprocessing, model evaluation, and
seamless integration with NumPy and SciPy. Its active community and extensive
documentation make it a reliable choice for both beginners and experienced data
scientists, facilitating predictive modeling and analysis in various fields.

TVB-Python
The console version of TVB [36] provides a powerful programmatic interface for
interacting with TVB. Unlike the graphical user interface (GUI), it's not designed for
remote use but is ideal for building reproducible workflows and detailed scripting. It
records precise actions and provides full access to TVB's APIs, allowing researchers
and developers fine-grained control over simulations and analyses. TVB offers several
flavors of scripting interfaces, differing in the shell used and the number of TVB
services utilized. The console interface is a valuable tool for those who require more
control and automation in their TVB workflows.

Matplotlib
Matplotlib [61] is a Python library for creating static, interactive, and animated
visualizations. With a MATLAB-like interface, it offers a wide array of plot types
including line plots, scatter plots, bar charts, histograms, and more. Its extensive
customization options enable users to fine-tune every aspect of their plots, from colors
and line styles to annotations and axes. Interactive features like zooming and panning
aid in data exploration. Its object-oriented API fosters extensibility, allowing users to
develop custom plot types and functionalities. Extensively documented with tutorials
and examples, it ensures easy adoption and learning.
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CHAPTER 4:

IMPLEMENTATION

4.1 Validation of Biomarkers

To assess the efficacy of the biomarker proposed in [1], we looked to replicate their
results. While the code was freely available on GitHub, there was a need to obtain an
independent dataset to perform the analysis. The COBRE dataset sample [31] available
in the International Neuroimaging Data-sharing Initiative was of interest as it provided
pre-processed fMRI data of patients diagnosed with schizophrenia and healthy controls.
The original dataset was released under the Creative Commons Attribution
Non-Commercial license making it available for use in our study.

4.1.1 Description of dataset

The dataset comprises pre-processed resting-state fMRI obtained from 72 patients
diagnosed with schizophrenia (58 males, age range = 18-65 years) and 74 healthy
controls (51 males, age range = 18-65 years). Each subject’s fMRI dataset is provided
as a single nifti file (.nii.gz), consisting of 150 EPI blood-oxygenation level dependent
(BOLD) volumes acquired over 5 minutes (TR = 2 s, TE = 29 ms, FA = 75°, 32 slices,
voxel size = 3x3x4 mm³, matrix size = 64x64, FOV = mm²). Pre-processing was done
using the NeuroImaging Analysis Kit (NIAK) version 0.12.14, executed on CentOS
version 6.3 with Octave version 3.8.1 and the Minc toolkit version 0.3.18. This data
was sourced from [31].

For each patient the following data was included:
1. Resting fMRI
2. Anatomical MRI
3. Phenotypic data in the form of TSV (Tab Separated Value file) for every

participant including: gender, age, handedness, diagnostic information, subject
type (i.e, patient or control).

4.1.2 Replicating FSA score

For computing the Functional Striatal Abnormalities (FSA) score [1], the following
three features of the striatum required to be computed:

1. Intra-striatal FC
2. Extra-striatal FC
3. Striatal fALFF

fALFF provides insights into the magnitude of spontaneous neural activity at rest, with
higher fALFF values indicating greater low-frequency fluctuations and potentially
more pronounced neural activity.
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Initially we were required to resample the striatum mask provided by the researchers
[58]. Resampling involves adjusting the spatial attributes, such as voxel size,
orientation, and field of view, of the mask to align with those of the fMRI images in our
dataset. We then proceeded to feature extraction. While the code provided included the
computation of Intra-striatal FC and Extra-striatal FC, we were required to compute
striatal fALFF. Towards this we referenced from [59] which provided a definition of
fALFF from which striatal fALFF for each subject based on this definition was
calculated.

Following feature extraction, a SVM classifier is applied for classification. The dataset
undergoes an 80-20 train-test split using the 'train_test_split' function from Scikit
Learn, ensuring 80% for training and 20% for testing, with a fixed random seed for
reproducibility. Feature scaling using 'StandardScaler' is applied to normalize feature
values, ensuring consistent input for the SVM classifier. To address potential variability
due to the train-test split, the process is repeated 10 times without a fixed seed,
resulting in a mean accuracy of 64.13%.

Following initial model training, a thorough hyperparameter tuning process is executed
using GridSearchCV to optimize the SVM classifier's performance. The parameter grid
encompasses various SVM kernel types ('sigmoid', 'linear', 'rbf'), gamma values, and
the regularization parameter (C), with logarithmic scales applied to gamma and C for
comprehensive exploration. GridSearchCV is initialized with the SVM classifier, the
defined parameter grid, 13-fold cross-validation, and parallel processing for efficiency.

Subsequently, the optimized model is used to predict labels for the test set, resulting in
an accuracy of 72.4%. Thus validating the FSA score with a suitable efficacy in
classification of schizophrenia and healthy subjects.

4.1.3 Further analysis of striatal fMRI

As elucidated in [1], [3], [16], the striatal region of the brain was found to be of much
significance in differentiating schizophrenic patients from healthy controls. To this end,
we aimed to use Nilearn’s built in Support Vector Classifier (SVC), to classify
schizophrenic patients and healthy controls in the COBRE dataset by focusing on the
striatum. The difference between a conventional SVM and Nilearn’s SVC lies in the
unique ability of Nilearn’s decoder to take 3-dimensional fMRI images directly as
input. This is in contrast with [1], where the researchers quantified specific striatal
features numerically and then fed it into Sklearn’s SVM.

The initial steps of the procedure followed is similar to the procedure provided by [1]
of defining the striatal mask, resampling the mask to a sample fMRI image and
visualizing the same. Since the fMRI file is in 4-dimensional (Fig 4.1.3.1), the ‘mean
img’ function is used to compute the mean of images of a given subject over time
which is the 4th dimension, thus converting it to 3 dimensions.
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Fig 4.1.3.1: Masking data: from 4D Nifti images to 2D data arrays. Source: (Online)
Nilearn [57]

The next step is training a SVM model which is done by using nilearn decoder which is
a predefined SVM model. The parameters for the model include the estimator and
mask. The model is fit using decoder.fit() which was predefined to instantiate the
Decoder. It takes the mean-fMRI images as input learning data and Subject Type as the
class label. To find the best accuracy, a loop was initiated to loop over different slices;
the first n participants were taken for training and the remaining to test the decoder
model as demonstrated in Fig 4.1.3.2 .
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Fig 4.1.3.2: Accuracy v/s train-test slice

The best prediction accuracy was found to be 81.5% over slice 116. Furthermore,
K-fold Cross Validation was used to evaluate the model performance on different
subsets of the data resulting in a global maxima accuracy of 75% with an average
accuracy of 65.2%. The SVM weights used to train the model are plotted on a sample
fMRI using the ‘plot_stat_map’ function as illustrated in Fig 4.1.3.3 . The correlation
between SVM weights is a measure of the similarity or linear relationship between the
weights associated with different features (voxels in the case of fMRI data) in the
model. A high positive correlation indicates that the weights move in the same direction
(both increase or decrease together), while a high negative correlation indicates that the
weights move in opposite directions.
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Fig 4.1.3.3: SVM weights plotted on fMRI with mask of striatum

Preserving the time dimension
Here, we looked to preserve the temporal aspect of our fMRI which we were previously
collapsing by taking the mean over time. To facilitate further analysis, the Nilearn’s
apply mask() function is employed, allowing the conversion of the 4D NiFtI image into
a structured 2D array, organized as (time series, voxels) as illustrated in Fig 4.1.3.1.
After acquiring the 2D array, the subsequent step involves feeding it into the SVM to
obtain accuracy. Here, a challenge emerged: the SVM necessitates a 1D array, whereas
our data assumed a 2D structure. To bridge this gap, we used the flatten() function.
Flattening an array refers to the process of transforming a multi-dimensional array into
a one-dimensional array by collapsing all of its dimensions. This transformation
appends subsequent rows to the end of the initial row seamlessly converting the 2D
array into the requisite 1D format, thereby facilitating the input compatibility demanded
by the SVM. Despite the loss of temporal structure, SVMs can effectively learn
decision boundaries from flattened fMRI data, especially when the relevant spatial
patterns are captured in the intensity values. Upon transforming the 2D array into a
requisite 1D format, the subsequent step involved training a SVM model, employing a
train-test split ratio of 0.2. The initial model training yielded an accuracy of 72.4%.
Next the average accuracy across 10 independent runs was computed, yielding an
average accuracy of 68.9%. Furthermore, to optimize the SVM model parameters, we
employed Grid Search, an advanced hyperparameter tuning technique. The optimal
parameters, as determined by GridSearchCV, were found to be ’C’: 166.81, ’gamma’:
1.75e-06, ’kernel’: ’sigmoid’, resulting in an accuracy of 79.3%.

Application of Convolution Neural Networks
As opposed to flattening or averaging the temporal dimension of the fMRI, we looked
at classification models that were able to retain dimensionality. fMRI data is inherently
multidimensional, comprising spatial and temporal dimensions that collectively encode
complex neural activity patterns. CNNs excel in processing multidimensional data [32],
making them well-suited for analyzing fMRI datasets.
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.Fig 4.1.3.4: CNN Architecture. Source: Rao, C. et al. 2020 [60]

A CNN was designed consisting of a series of layers designed to extract and process
features from the input fMRI data (Fig 4.1.3.4). It begins with a 3D convolutional layer
(Conv3D) employing 32 filters, each with a kernel size of (3, 3, 3), and ReLU
activation function. This is followed by a 3D max-pooling layer (MaxPooling3D) with
a pool size of (2, 2, 2) to reduce spatial dimensions and capture essential features.
Another convolutional layer with 32 filters and a kernel size of (3, 3, 3) is added,
followed by another max-pooling layer with the same specifications. The output is then
flattened into a one-dimensional array and fed into a fully connected dense layer
(Dense) with 64 neurons and ReLU activation. Finally, an output layer with a single
neuron and sigmoid activation function is employed for binary classification. This
architecture is tailored to classify subjects into Healthy Control or Patient categories
based on fMRI data. The model underwent training across various test sizes to identify
the optimal accuracy split. A maximum accuracy of 72.4% was achieved with a 60-40
train-test split. Following this, a confusion matrix was plotted, revealing 23 patients
correctly classified as Healthy and 19 classified as schizophrenic.

4.2 Towards simulation

We chose to use TVB as our simulation tool owing to its extensive capabilities aligned
with our goal of simulating whole-brain dynamics through large-scale brain network
models. TVB provides both a Graphical User Interface (GUI) which provides a
plethora of intuitive visualization as well as a Python library allowing for robust
analysis and computation.

4.2.1 Input to TVB

TVB takes as input a ‘Connectivity’ file which contains a detailed description of the
structural connectivity of the brain that aims to quantify the strength of signal
transmission between regions. One can provide their own connectivity by processing
multimodal MRI through a dedicated pipeline designed for TVB [12]. Additionally,
TVB also provides a series of connectivity datasets which are readily usable, each
mapping a different number of regions. These connectivities are primarily derived from
the CoCoMac database and are processed to generate a series of text files which TVB
uses to inform the structural aspect of large-scale brain simulation.
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We chose to use the Connectivity-96 dataset [45] available in TVB, that provided a
suitable level of resolution in region mapping that enabled us to show region-level
aberrations. This dataset contains 82 cortical and 14 subcortical regions of interest.

A description of the components of Connectivity-96 dataset

● weights.txt: A 96x96 matrix representing connectivity weights between brain
regions. It represents structural connectivity constructed using diffusion
weighted MRI (dwMRI) tractography.

● tract_lengths.txt: A 96x96 matrix providing the average length of fiber tracts
in millimeters between each pair of brain regions. It is used to compute the
transmission delay in signal transmission.

● info.txt: Contains units for quantities, particularly the area, expressed in square
millimeters (mm2).

● cortical.txt: A vector of 96 integer values. Each value indicates whether the
corresponding brain region is cortical (1) or subcortical (0).

● centres.txt: Consists of 96 rows and 4 columns.
○ Column 1: Unique ID for each brain region.
○ Columns 2, 3, 4: x, y, z cartesian coordinates of the center point of each

region. If white matter fiber lengths are unavailable, TVB computes a
tract lengths matrix based on the Euclidean distance between region
pairs using this information.

● average_orientation.txt: Contains 96 rows and 3 columns. Each row represents
the coordinates for the orientation of the center point of a brain region.

● areas.txt:Provides the surface area in square millimeters of each brain region.

4.2.2 Simulation parameters in TVB

TVB requires configuring the following parameters in order to execute a simulation:

1. Long-range connectivity: Long-range connectivity is the pre-processed
structural connectivity data. ex. Connectivity-96

2. Conduction Speed: Specifies the speed at which the signals can travel from one
region to another.

3. Coupling: Allows the user to specify the global coupling scheme (linear,
sigmoidal, etc) between nodes in the network.

4. Cortical Surface: If a surface-based simulation is required, it is necessary to
load a cortical surface dataset. If one is performing a region-based simulation,
leave this unchecked.
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5. Spatiotemporal stimulus: This allows us to specify some stimulus that varies
with time for the model that can be configured in the ‘Stimulus Tab’.

6. Local Dynamic Model: This allows us to choose one of the several neural mass
models available in TVB. Additionally, we also set the values for the various
parameters used in the neural mass model.

7. Integration scheme: This allows us to choose the integration scheme that will
produce a numerical solution to the set of differential equations of the neural
mass model.

8. Integration step-size: This defines how frequently a solution to the differential
equations of the neural mass model is to be produced. A smaller step size will
result in better accuracy but an increased compute time.

9. Monitors: Monitors allow us to specify what output we want the simulation to
provide. TVB can output Raw Recording, Temporal Sub-Sample, EEG, MEG,
Intracerebral / Stereo EEG BOLD, etc.

10. Simulation length: This defines how long the brain activity would be simulated
for.

11. PSE (Parameter Space Exploration): Optionally TVB provides a feature to
produce multiple simulations by specifying the range of values of particular
parameters.

4.2.3 Jansen-Rit Neural Mass Model

Neural mass models describe the activity produced within a single node (which can be
a region in the case of the region-based simulations or a vertex of the surface triangles
as in surface-based simulations in TVB). Our goal is to simulate large-scale brain
activity i.e, whole-brain activity, therefore, it is not computationally feasible to simulate
the activity of each individual neuron as there are roughly 86 billion of them in the
brain. We instead group multiple neurons in what is called a neural mass or neural
population. Within this grouping, we may look to differentiate neurons based on their
type for example Excitatory and Inhibitory. Therefore the activity of the neural mass
can be expressed using a simplified model that describes the average/mean behavior of
each of these groups. Mathematically, the activity of these individual neural masses is
quantified by expressing the model as a set of differential equations that describes the
change of some biophysical quantity such as membrane potential, firing rate, etc. with
respect to time. These are thus called neural mass models. TVB provides several such
neural mass models.

We chose to use the Jansen-Rit Neural Mass Model [40] for our study, owing to the fact
that it is well-established in the field of simulation and has been deeply studied. This
model is particularly focused on capturing the dynamics of excitatory and inhibitory
interactions within neuronal populations. The model consists of a set of differential
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equations that describe how the membrane potentials of excitatory and inhibitory
neurons evolve over time in response to inputs and feedback from other neurons.

A)

B)

Fig 4.2.3.1: (A) Jansen Rit Model. (B) Diagram of Jansen and Rit model for a cortical
column, each color and shape represent one type of column population: pyramidal
(blue), excitatory interneuron (green) and inhibitory interneuron (red). Inspired by
Roser Sanchez-Todo et al 2018 [69]
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The Jansen-Rit model describes the dynamics of a small cortical region by considering
three interconnected neural populations: excitatory interneurons , pyramidal cells, and
inhibitory interneurons. The model aims to replicate the spontaneous EEG alpha
oscillations and the responses observed in evoked potentials following pulsatile input.

The model receives external input (p) representing excitatory and inhibitory inputs,
respectively, from outside the local cortical region. The inputs are then processed by
linear filter boxes (he(t) and hi(t)) representing the mean response of excitatory and
inhibitory synapse populations, respectively. These filters describe the time course of
the population mean of postsynaptic potentials, considering synaptic and dendritic
dynamics. The filtered inputs contribute to the mean membrane potentials of the
excitatory, pyramidal, and inhibitory interneuron populations. The inhibitory input
negatively affects the membrane potential of the pyramidal population. The mean
membrane potentials are then passed through a sigmoid function (Sgm(v)) to determine
the mean output firing rate of each neural population. This sigmoid function
incorporates the dispersion of responses due to variability in parameters and neuronal
states. The model contains a number of useful relationships between the connectivity
constants c1 to c4. These constants that act as amplifiers of sorts, are proportional to the
average number of synapses between the pyramidal cells and the excitatory and
inhibitory feedback elements. The primary output of the model is taken as the
difference between the mean potentials of the pyramidal population and the inhibitory
input. This represents the net activity of the pyramidal cells and serves as the output
signal of the model.

Jansen-Rit Model equations

The following equations were referenced from the Jansen Rit 1995 model [55].
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In the above equations, each state variable (yn) provides an output measuring the
following:
y0- pyramidal cell postsynaptic membrane potential.

y1- excitatory interneuron post-synaptic membrane potential.

y2- inhibitory interneuron post-synaptic membrane potential.

y3- pyramidal cell population firing rate.

y4- excitatory interneuron firing rate.

y5- inhibitory interneuron firing rate.

Sigma[v]- sigmoidal activation function.

Configurable parameters
The following are the parameters of the Jansen Rit model that can be configured in
TVB [72].

A: Maximum amplitude of Excitatory Postsynaptic Potentials (EPSP) in millivolts
(mV). Also known as the average synaptic gain.

B: Maximum amplitude of Inhibitory Postsynaptic Potentials (IPSP) in mV. Also
known as the average synaptic gain.

a: Reciprocal of the time constant of passive membrane and all other spatially
distributed delays in the dendritic network, in milliseconds-1. Also known as the
average synaptic time constant.

b: Reciprocal of the time constant of passive membrane and all other spatially
distributed delays in the dendritic network, in milliseconds-1. Also known as the
average synaptic time constant.

v0: Firing threshold (PSP) for which a 50% firing rate is achieved. It represents the
value of the average membrane potential corresponding to the inflection point of the
sigmoid, in mV.

μmax: Determines the maximum firing rate of the neural population, in seconds-1.

r: Steepness of the sigmoidal transformation, measured in mV-1.

J: Average number of synapses between populations.

p_min: Minimum input firing rate.

p_max: Maximum input firing rate.

μ: Mean input firing rate.
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4.2.4 Simulating region-level dysfunction

TVB provides the unique ability to define different configurations of the same neural
mass model and apply these configurations to different regions. This approach would
thus be useful to simulate region-level dysfunction. We looked to identify regions in the
Connectivity-96 that were analogous to the dysfunctioning regions identified in the
literature survey in Section 2.2.

Towards this end, we defined 3 different configurations of the Jansen Rit Model.

1. Default Configuration- This configuration is representative of normal resting
state brain activity as specified in [40].

2. Increased activity- This configuration is created by increasing the excitatory
parameters ‘c1’ and ‘c2’ of the Jansen Rit Model leading to increased activity

3. Decreased activity- This configuration is created by increasing inhibition
parameters ‘c3’ and ‘c4’ of the Jansen Rit Model leading to decreased activity.

Table 4.2.4.1 lists the regions that were altered with the increased and decreased
activity configurations. It is to be noted that in TVB, the nomenclature has been
marginally altered in that ‘c1’, ‘c2’,’c3’,’c4’ is represented as ‘α1’, ’α2’, ‘α3’, ‘α4’.
Each of these terms by default are represented using a single value that is applied to all
the nodes i.e, regions of the model. However, in order to show varied values across
regions, TVB requires an array of 96 values to be provided, allowing one to set a
unique value for each of the 96 regions.

Dept. of Computer Engineering, DBCE, Fatorda 40



Computer Simulation of Neuropathology in Schizophrenia

Parameter Value

A 3.25

B 22.0

a 0.1

b 0.05

v0 5.52

vmax 0.0025

r 0.56

J 135.0

C1 1.0 1.25

C2 0.8 1.0

C3 0.25 0.31

C4 0.25 0.31

pmin 0.12

pmax 0.32

μmax 0.22

Table 4.2.4.1: Configuration of parameters for the initial execution of the Jansen-Rit
Model simulation

Dept. of Computer Engineering, DBCE, Fatorda 41



Computer Simulation of Neuropathology in Schizophrenia

Increased activity regions Reduced activity regions

Orbital Inferior prefrontal cortex Posterior cingulate cortex

Orbitomedial prefrontal cortex Medial prefrontal cortex

Orbital Lateral prefrontal cortex Parahippocampal cortex

Anterior visual area, ventral part Medial premotor cortex

Visual area 2 (secondary visual cortex) Anterior cingulate cortex

Anterior visual area, dorsal part Inferior parietal cortex

Visual area 1 (primary visual cortex) Medial parietal cortex

Secondary somatosensory cortex Intraparietal cortex

Primary somatosensory cortex Superior parietal cortex

Ventrolateral premotor cortex Superior temporal cortex

Primary motor cortex Anterior insula

Dorsolateral premotor cortex Posterior insula

Frontal eye field Dorsomedial prefrontal cortex

Ventrolateral prefrontal cortex

Dorsolateral prefrontal cortex

Table 4.2.4.2: Regions tweaked to show increased or reduced activity based on prior
studies reviewed in Section 2.2
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4.2.5 Coupling and Integration scheme

In order to define the nature of synchrony between two regions in the brain network
model, a coupling scheme is defined. TVB supports several coupling schemes like
Linear, Sigmoidal, etc. However a special sigmoidal coupling scheme exists built to be
used specifically with the Jansen-Rit model. The equation for the coupling is defined as
follows:

c(x) = 𝑐𝑚𝑖𝑛 + 𝑐𝑚𝑎𝑥 − 𝑐𝑚𝑖𝑛( )/1. 0 + 𝑒𝑥𝑝 − 𝑟 𝑥 − 𝑚𝑖𝑑𝑝𝑜𝑖𝑛𝑡( )/σ( )
Source: Jansen-Rit Sigmoidal Coupling Scheme TVB [73]

This equation describes how neuronal populations interact within the cortical network,
with the coupling strength modulated sigmoidally by the input variable . The𝑥
parameters of the functions are:

: Represents the minimum coupling strength, defining the baseline level of𝑐𝑚𝑖𝑛
interaction between neuronal populations.

: Denotes the maximum coupling strength, indicating the upper limit of𝑐𝑚𝑎𝑥
connectivity within the neural network.

: Specifies the midpoint of the sigmoidal curve, delineating the transition𝑚𝑖𝑑𝑝𝑜𝑖𝑛𝑡
point where the coupling strength begins to rise significantly.

: Represents the steepness of the sigmoidal transformation, influencing the rate at𝑟
which the coupling strength changes in response to variations in the input.

: Represents the scaling factor applied to the coupling term, adjusting the overall𝑎
magnitude of the coupling effect.

Stochastic Integration
Since the Jansen Rit model is represented as coupled second-order nonlinear ordinary
differential equations, an integration scheme is required to solve and produce solutions
to the differential equations. TVB provides several deterministic and stochastic
integration schemes. Stochastic integration is a computational technique employed to
simulate systems influenced by random fluctuations or noise. In the context of neural
modeling, stochastic integration accounts for the inherent variability observed in neural
activity due to factors such as synaptic noise and spontaneous neuronal firing. Unlike
deterministic integration methods, which yield fixed trajectories, stochastic integration
introduces randomness into the system, enabling the simulation of probabilistic
behaviors inherent in the brain. Given the nature of our study in simulating a diseased
brain we chose to use the Heun-Stochastic integration scheme [51].
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4.2.6 Generating BOLD and Functional Connectivity

The BOLD signal is a measure commonly used in fMRI to infer neural activity in the
brain. It relies on the principle that changes in neural activity lead to changes in local
blood flow and oxygenation levels, which can be detected by fMRI. The BOLD signal
is based on the differential magnetic properties of oxygenated and deoxygenated
hemoglobin. Oxygenated hemoglobin is diamagnetic and leads to a slight decrease in
the local magnetic field, while deoxygenated hemoglobin is paramagnetic and leads to
a slight increase in the local magnetic field. These changes in magnetic properties alter
the MR signal detected by the scanner. By monitoring these changes in MR signal,
fMRI can indirectly measure neural activity in different brain regions. Increases in the
BOLD signal are interpreted as increases in neural activity, while decreases may
indicate decreases in activity or changes in neuronal processing. We thus looked to
generate a simulated BOLD signal for our brain network model which incorporated the
region-level dysfunction.

While the Jansen-Rit model simulates neural activity which is represented as firing
rates or membrane potentials, there is a need to map this neural activity to a simulated
BOLD signal. The Balloon-Windkessel [48] model is widely used for this purpose,
taking as input neural activity and mapping it to a BOLD signal. However due to the
computational cost associated with the Balloon-Windkessel model, TVB offers a
simplified computational approach for generating simulated BOLD time series, which
is particularly useful for comparing with empirical data. Instead of directly
implementing the complex differential equations of the Balloon-Windkessel, TVB
employs a Volterra Kernel approximation [49]. Conceptually, it describes a damped
oscillatory wave, characterized by parameters such as the exponential decay rate and
oscillatory frequency, which govern the temporal dynamics of the hemodynamic
response that is calculated periodically [50]. The period is typically a multiple of 500
ms; most studies used a period of 2000 ms.

TVB encompasses outputs within ‘monitors’ which can be specified prior to executing
a simulation. We utilized two monitors:

● BOLD Monitor: This monitor captures BOLD signals estimated by the Volterra
Kernel.

● Temporal Average Monitor: By computing temporal averages of neural activity,
this monitor offers a broader perspective on the overall dynamics of the
simulated brain activity.

The output of the BOLD monitor is structured as a four-dimensional array i.e, (time,
state variable, region, mode). Here ‘time’ represents the number of BOLD signal
calculations is determined by the simulation length divided by the BOLD period. There
are 4 state variables for the Jansen-Rit Model ( 'y0', 'y1', 'y2', and 'y3') and 96 region
outputs in total. Notably, for the Jansen-Rit Model, the mode remains constant at 1
since it is not multi-modal.
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In order to compute the resultant BOLD signal, we consider the net excitatory
population’s output. This is the difference between 'y1' and 'y2' [43]. By calculating the
difference between these two variables, we isolate the excitatory component of neural
activity, which is essential for accurately characterizing FC patterns. Subsequently, we
looked to obtain a steady signal by discarding the initial fluctuations in the signal
inspired by similar studies [47]. To remove transient time from our simulation data, we
apply a slicing operation to the arrays containing the BOLD signals and the BOLD time
series. Specifically, we discard the initial portion of the data, which corresponds to the
transient period at the beginning of the simulation. By removing these transient
fluctuations, we ensure that our analysis focuses on the steady-state behavior of the
neural network, providing a more accurate representation. Once the transient
fluctuations are removed, we utilize TVB's TimeSeries Region method to generate a
resultant time series sampled at 1ms, providing a smooth signal as opposed to the
discretized signal caused by the periodic nature of the BOLD signal calculation.

Functional Connectivity Matrix Computation:
Since we now have a resultant BOLD time-series we can now compute a FC matrix. In
practical terms, FC is often represented as a matrix, where each cell represents the
strength of the statistical correlation between two brain regions. There are several
methods for computing this statistical similarity including Pearson’s Correlation, Cross
correlation, Partial Correlation, etc [52]. We chose to use Pearson’s Correlation
Coefficient provided in Numpy [53]. The resulting FC matrix, structured as a 96x96
array, represents the statistical similarity of the BOLD signal between all pairs of brain
regions. We then use Nilearn’s ‘Plot Matrix’ function to plot the resultant FC matrix
along with the region labels.

4.2.7 Outputs of the simulation

The outputs of the simulation have been illustrated in Fig 4.2.7.1 and Fig 4.2.7.2. shows
the BOLD signal that has been simulated for the 96 regions for the simulation length
specified i.e 20 seconds with the removal of the initial fluctuations. Fig 4.2.7.1 is the
FC matrix generated by computing the Pearson correlation coefficient between every
region’s BOLD time series to the rest.

The simulated FC was compared to empirical FC using the Mean Squared Error (MSE)
metric, which was found to be 0.18.
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Fig 4.2.7.1: Simulated FC

Fig 4.2.7.2: Simulated BOLD Time Series

Dept. of Computer Engineering, DBCE, Fatorda 46



Computer Simulation of Neuropathology in Schizophrenia

4.2.8 Towards optimization

Optimization algorithms are diverse, each tailored to solve specific types of problems.
We looked to optimize our simulation to better mimic empirical data. However, one
common challenge faced by computational neuroscientists is the computational time
and cost incurred when running a single simulation to completion. It thus makes
traditional grid searches impractical. Bayesian optimization offers a solution to this
problem by incorporating an informed hyperparameter search with a degree of
randomness.

Bayesian optimization consists primarily of two functions:
1. Black box function f(x) - represents the objective to optimize
2. Acquisition function a(x)- guides the search for optimal parameters.

First, initial parameter values are randomly generated, and the corresponding function
outputs are measured. Then, a Gaussian process model is trained using the observed
data. The acquisition function utilizes this model to propose new parameter values for
evaluation, aiming to maximize the expected improvement in function performance.
This process iterates until a parameter value leading to the global optimum is found.
Importantly, historical data is used to train the Gaussian process model at each iteration,
enabling better predictions as more data becomes available. The Bayesian-Optimization
package in Python [56] provides this complete functionality.

Given the large state-space of configurable parameters, it would not be feasible to
optimize all the parameters of the simulation. After conducting numerous simulations
manually, it became evident that only a select few parameters significantly influenced
the resultant FC matrix. We thus decided to optimize the following parameters:

1. Sigmoidal Coupling
2. J- Average number of synapses between populations
3. Noise

In our study, the black box function carried out the simulation and returned the MSE
between the simulated FC and empirical FC. Given the goal of Bayesian optimization is
to maximize the value returned by the black box function, we thus returned the negative
value of the MSE. The deployment of Bayesian Optimization facilitated a systematic
exploration of the extensive hyperparameter space, capitalizing on prior evaluations to
inform subsequent sampling decisions.

Results
The optimization process was executed across 100 iterations yielding a global minima
of MSE as 0.094. After comparing the results of the simulation before and after
optimization, there was a noticeable reduction of MSE by 48.2%, underscoring the
efficacy of the Bayesian optimization process.
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Fig 4.2.8.1: Simulated FC after optimization

Fig 4.2.8.1: Simulated BOLD Time Series after optimization
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CHAPTER 5:

TESTING AND VALIDATION

Processing empirical data

The dataset used for validation of the simulation, was the COBRE dataset [31] used
previously for the validation of biomarkers. The COBRE dataset contained
preprocessed fMRI images of patients and controls stored in the Neuroimaging
Informatics Technology Initiative (NIfTI) format. We thus needed to generate FC
matrices of each of these fMRI files. To this end, we first obtained the Connectivity-96
parcellation map [45] [54] along with the labels which would enable us to map the 96
regions on the fMRI. Subsequently, a masker is constructed using Nilearn to extract
time series data from each fMRI file based on the parcellation and region labels on
Connectivity-96. A correlation matrix i.e FC matrix is then computed based on the
timeseries for each of the regions for the patients and controls.

In order to capture the dynamics across patients, a single FC matrix is computed for all
patients by taking the mean across subjects shown in Fig 5.1(A) to capture the net
effects. The same was also carried out for all the healthy controls illustrated in Fig
5.1(B) .

A) B)

Fig 5.1: (A) Mean Patient FC and (B) Mean Control FC
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Detecting Presence of Biomarkers

To assess the efficacy of our simulations, we looked to test the existence of biomarkers
put forth by various studies. A pertinent impediment was the different regions that were
specified in the biomarkers, some of which were not directly present among the 96
regions that our model simulated. This issue arises due to the different
mappings/parcellations used by researchers. To mitigate this, we identified regions
based on their proximal positions on anatomical maps and worked to find an analogous
mapping to Connectivity-96.

Our approach is to compare for a given region/network, the simulated FC, representing
a schizophrenia brain, to that of the healthy controls’ FC. We then compare this against
the experimental study (Section 2.3) i.e, whether FC increased or decreased in patients
with schizophrenia as compared to healthy controls thus verifying the presence or
absence of the biomarker within our simulation. Towards this, we initially designed
Python-based functions to compute intra-region FC, intra-network FC, inter-region FC,
and inter-network FC based on the regions/networks provided as input. For each
biomarker, the appropriate computation was carried out on the simulated FC matrix as
well the healthy controls’ FC matrix. Finally, the two values were compared.. Table 5.1
shows the biomarker that was tested along with the result i.e whether the simulated FC
indicated the presence of the biomarker.

Results

Biomarker Simulated FC

Reduced ventral striatum-hippocampus coupling [3] True

Reduced intra-striatal FC [1] True

Decreased FC between the frontoparietal network and the

visual networks [64]

False

Increased FC between the default mode network and the

central executive networks [65]

True

Increased FC between the sensory processing and the default

mode network [66]

True

Increase in FC within the default mode network [67] True

Table 5.1: Test for presence of biomarkers for schizophrenia in the optimized
simulation
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CHAPTER 6:

CONCLUSION AND FUTURE SCOPE

Firstly, a thorough study on fMRI biomarkers for schizophrenia was successfully
carried out. The study led to significant findings, notably emphasizing the striatal
region of the brain as a focal point for these biomarkers. We successfully replicated
Functional Striatal Abnormalities score biomarker on an independent dataset resulting
in an accuracy exceeding 70%. Moreover, leveraging an SVM approach targeting the
striatal region underscored the dysfunction associated with the striatum with an
impressive classification accuracy of 84% between patients and controls. A large-scale
brain simulation was carried out using The Virtual Brain console that incorporated
region-level dysfunction informed by several studies on neural aberrations in the
functional imaging of schizophrenia. A BOLD signal was simulated from which a
Functional Connectivity Matrix was generated. The simulation’s parameters such as
coupling and noise were further improved by Bayesian optimization, using empirical
data to inform the optimization. The optimization successfully reduced the Mean
Squared Error between the simulated and empirical FC by 48%. Lastly we looked to
verify the existence of biomarkers for schizophrenia. We successfully detected the
presence of 5 out of 6 biomarkers that we reviewed, underscoring the success of the
region-level tweaking of the simulation.

Our simulation was tailored to maintain similarity with data from multiple
schizophrenia patients, rather than focusing solely on a single patient. While this
approach allows us to capture the variability present across patient populations, it
presents limitations for individualized applications. We suggest a shift towards
individualized modeling, where models mimic the unique characteristics of a single
patient's brain. This personalized approach provides a greater ability of the model to
mimic the activity patterns of the patient’s brain, enabling the identification of
patient-specific biomarkers and treatment targets. In exploring the future scope of our
project, it becomes evident that large-scale simulations, while valuable in elucidating
broad neural dynamics, may fall short in capturing the nuanced aberrations present at
the neuron or even cellular level. In this regard, embracing a multiscale perspective
appears to be the way forward. By integrating data and insights across various levels of
neural organization, from molecular and cellular mechanisms to whole-brain dynamics,
multiscale modeling would seem to offer a more comprehensive understanding of
schizophrenia pathology. However the primary impediment to multi-scale simulation is
the enormous compute power required. Therefore there is a need for several advances
in code optimization, parallelisation and processes of the like to be developed and
studied to be performed when dealing with such complexities.
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